A realizability interpretation for classical analysis
نویسندگان
چکیده
منابع مشابه
A realizability interpretation for classical analysis
We present a realizability interpretation for classical analysis–an association of a term to every proof so that the terms assigned to existential formulas represent witnesses to the truth of that formula. For classical proofs of Π2 sentences ∀x∃yA(x, y), this provides a recursive type 1 function which computes the function given by f(x) = y iff y is the least number such that A(x, y).
متن کاملA Realizability Interpretation for Classical Arithmetic
A constructive realizablity interpretation for classical arithmetic is presented, enabling one to extract witnessing terms from proofs of 1 sentences. The interpretation is shown to coincide with modified realizability, under a novel translation of classical logic to intuitionistic logic, followed by the Friedman-Dragalin translation. On the other hand, a natural set of reductions for classical...
متن کاملTyped realizability for first-order classical analysis
We describe a realizability framework for classical first-order logic in which realizers live in (a model of) typed λμ-calculus. This allows a direct interpretation of classical proofs, avoiding the usual negative translation to intuitionistic logic. We prove that the usual terms of Gödel’s system T realize the axioms of Peano arithmetic, and that under some assumptions on the computational mod...
متن کاملOn Krivine's Realizability Interpretation of Classical Second-Order Arithmetic
This article investigates Krivine’s realizability interpretation of classical second-order arithmetic and its recent extension handling countable choice. We will start by presenting a two-step interpretation which first eliminates classical logic via a negative translation and then applies standard realizability interpretation. We then argue that a slight variant of Krivine’s interpretation cor...
متن کاملQuantitative classical realizability
Introduced by Dal Lago and Hofmann, quantitative realizability is a technique used to define models for logics based on Multiplicative Linear Logic. A particularity is that functions are interpreted as bounded time computable functions. It has been used to give new and uniform proofs of soundness of several type systems with respect to certain time complexity classes. We propose a reformulation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archive for Mathematical Logic
سال: 2004
ISSN: 0933-5846,1432-0665
DOI: 10.1007/s00153-004-0233-3